A Variational Method for the Optimization of Tone Mapping Operators
نویسندگان
چکیده
Given any metric that compares images of different dynamic range, we propose a method to reduce their distance with respect to this metric. The key idea is to consider the metric as a non local operator. Then, we transform the problem of distance reduction into a non local variational problem. In this context, the low dynamic range image having the smallest distance with a given high dynamic range is the minimum of a suitable energy, and can be reached through a gradient descent algorithm. Dealing with an appropriate metric, we present an application to Tone Mapping Operator (TMO) optimization. We apply our gradient descent algorithm, where the initial conditions are Tone Mapped (TM) images. Experiments show that our algorithm does reduce the distance of the TM images with the high dynamic range source images, meaning that our method improves the corresponding TMOs.
منابع مشابه
An Iterative Scheme for Generalized Equilibrium, Variational Inequality and Fixed Point Problems Based on the Extragradient Method
The problem ofgeneralized equilibrium problem is very general in the different subjects .Optimization problems, variational inequalities, Nash equilibrium problem and minimax problems are as special cases of generalized equilibrium problem. The purpose of this paper is to investigate the problem of approximating a common element of the set of generalized equilibrium problem, variational inequal...
متن کاملA SYSTEM OF GENERALIZED VARIATIONAL INCLUSIONS INVOLVING G-eta-MONOTONE MAPPINGS
We introduce a new concept of general $G$-$eta$-monotone operator generalizing the general $(H,eta)$-monotone operator cite{arvar2, arvar1}, general $H-$ monotone operator cite{xiahuang} in Banach spaces, and also generalizing $G$-$eta$-monotone operator cite{zhang}, $(A, eta)$-monotone operator cite{verma2}, $A$-monotone operator cite{verma0}, $(H, eta)$-monotone operator cite{fanghuang}...
متن کاملGraph Convergence for H(.,.)-co-Accretive Mapping with over-Relaxed Proximal Point Method for Solving a Generalized Variational Inclusion Problem
In this paper, we use the concept of graph convergence of H(.,.)-co-accretive mapping introduced by [R. Ahmad, M. Akram, M. Dilshad, Graph convergence for the H(.,.)-co-accretive mapping with an application, Bull. Malays. Math. Sci. Soc., doi: 10.1007/s40840-014-0103-z, 2014$] and define an over-relaxed proximal point method to obtain the solution of a generalized variational inclusion problem ...
متن کاملStrong convergence theorem for a class of multiple-sets split variational inequality problems in Hilbert spaces
In this paper, we introduce a new iterative algorithm for approximating a common solution of certain class of multiple-sets split variational inequality problems. The sequence of the proposed iterative algorithm is proved to converge strongly in Hilbert spaces. As application, we obtain some strong convergence results for some classes of multiple-sets split convex minimization problems.
متن کاملApproximating fixed points of nonexpansive mappings and solving systems of variational inequalities
A new approximation method for the set of common fixed points of nonexpansive mappings and the set of solutions of systems of variational inequalities is introduced and studied. Moreover, we apply our main result to obtain strong convergence theorem to a common fixed point of a nonexpannsive mapping and solutions of a system of variational inequalities of an inverse strongly mono...
متن کامل